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CLOSURE OF A CAVITY IN POLYMER LIQUID 

Z. P. Shul'man and S. P. Levitskii UDC 532.5:532.135 

The closure of a spherical cavity in a relaxing polymer liquid with nonlinear 
rheological equations is investigated. 

Known experimental results indicate anomalous dynamics of bubbles in liquids containing 
polymer additives. As well as the integral effect of suppression of cavitation of various 
types in solutions of high-molecular compounds [i], slowing of the collapse of individual 
inclusions has been noted [2], together with stabilization of the spherical form and retar- 
dation of the development of microjets in the closure of bubbles close to solid boundaries 
[3]. The theoretical model of cavity growth and collapse in a polymer medium was formulated 
in [4, 5], respectively, within the framework of a spherically symmetric formulation of the 
problem. To describe the rheology of the liquid, the Oldroid equation with an upper convec- 
tive derivative was used [6]. The equations of gas-bubble oscillation in this liquid were 
obtained in [7]. Note that nonlinear pulsations of the bubbles in a viscoelastic liquid 
were also numerically investigated in [8-10], but instead of the corresponding invariant time 
derivative the ordinary derivative d/dt was used for the tensor quantities in [8, 9] and 
the partial derivative 8/3t in [i0]. 

Numerical calculations of the nonlinear dynamics of a cavity in a relaxing polymer medium 
on the basis of integrodifferential equations [4, 5] are sufficiently difficult (in [5], be- 
cause of the development of numerical instabilities, only the initial stage of collapse was 
calculated), which complicates the use of such equations, in particular, for the description 
of collective phenomena. It is shown below that integrodifferential equations of the type in 
[4, 5] may be reduced to equivalent differential equations, and on this basis the features of 
cavity closure in polymer liquid are analyzed. 

The equation of radial bubble motion in an incompressible non-Newtonian liquid takes the 
form 

( 3) z=p~-p~+2~R-~=s, z=p ~+-yN~, 

oo 

S = 2 [ (T,.~. -- Tq~,p) (3Y q- R3) - ~ dy.  
0 

( i )  

For T, a rheological equation of Oldroid type is adopted [6] 

T = T ( ' ) - F  T (2), T(2)=2~I (1- - [$ )D,  

T(O q- ~ [DT(O/Dt  - -  or  -F D'T(1))] = 2~1~D. 

(2) 

When 1/2 < ~ < i, Eq. (2) provides a qualitatively correct description of the elongational 
flow of polymer solutions and follows from various structural models; the equations adopted 
in [4, 5] are identical to Eq. (2) in the particular case when ~ = I. Using the kinematic 
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integral [7]  found from the continuity equation, Eq. ( 2 )  i s  solved for T(rr) , T(~)'vv and S is 
determined 

S :--- S(1) --F-S (2), S(2) = - -4 ~ (1  - - ~ ) ~ R  -1, (3) 

2~n ~-t 
c(~2~_v2~)(~_v)-i R2~I-~)(~)R(~)d~, ~=R~(~),  v=R~(t). (4) S(1) - -  y~ = ], e 

~2%~4~ (/) 0 

E q u a t i o n s  ( 1 ) ,  ( 3 ) ,  and (4 )  d e t e r m i n e  t h e  i n t e g r o d i f f e r e n t i a l  dynamic e q u a t i o n  o f  a 
c a v i t y  in  a po lymer  medium, which  i s  e q u i v a l e n t ,  when a = 1, t o  t h e  a n a l o g o u s  e q u a t i o n s  o f  
[4 ,  5 ] .  Note  t h a t  t h e  i n t e g r a l  J a ( t )  c h a r a c t e r i z i n g  t h e  i n f l u e n c e  o f  t h e  non -Newton ian  p a r t  
o f  t h e  s t r e s s  t e n s o r  in  Eq. (1 )  may be d e t e r m i n e d  f rom a s y s t e m  o f  f i r s t - o r d e r  d i f f e r e n t i a l  
e q u a t i o n s  in  t h e  c a s e  where  t h e  i n t e g r a n d  may be r e p r e s e n t e d  in  t h e  fo rm E ~ h ( t ) ~ h ( ~ )  In  

h 

p a r t i c u l a r ,  t h i s  i s  t h e  c a s e  w i t h  bound a ry  v a l u e s  o f  t h e  p a r a m e t e r  ~ f rom t h e  r a n g e  o f  v a r i a -  
t i o n  a = 1 /2  and a = 1, f o r  wh ich ,  r e s p e c t i v e l y ,  t h e  f o l l o w i n g  e q u a t i o n s  e q u i v a l e n t  t o  Eq. 
(4 )  age  o b t a i n e d  

21/2 + (2%-1+ 2p, R - I ) J 1 / 2  = __ 4[~12%-U~R-I, 

Ja = I n  + J12, fill -{- ( 2%-1 .3[_ 4/~R-1) dn = - -  2[M] 2%-aR'R-1, 

31 ' + (2%--1 + , ~ - - l )  Sl~ = - -  2[~'q2% - I  RR -1.  

(5)  

(6)  

For a = 1/2, it follows from Eqs. (2) and (5) that J1/2(t) ~ T(1)(0, t). This means 
rr 

that, when a = 1/2, rheologica! properties of the polymer medium with nonlinear pulsations 
of the cavity that are analogous to conventional viscosity for a Newtonian liquid only 
appear in the region adjacent to the phase interface and may be taken into account in the 
boundary conditions in deriving the equation for R(t) [ii]. Note in connection with this 
that with small bubble pulsations the possibility of taking theological features of a 
polymer liquid into account solely in terms of the boundary conditions at the surface of the 
inclusion was rigorously proven in [12]. For a = i, Jl(t) < T(Z)(0, t), and taking account 

rr . . 
of the theology of the medium solely in terms of the boundary condxtlon leads to some slowing 
of the compression and acceleration of the expansion of the inclusion in comparison with the 
solution of the accurate system in Eqs. (i), (3), and (6). 

For a Newtonian liquid with the viscosity of the polymer solution, S e Sp = -4nRR -I 
in Eq. (i).. With closure of the cavity for a state of equilibrium at time t = 0, the in- 
equalities R < 0, ~ < 0 hold in the initial section, and it follows from Eqs. (3) and (4) 
that S < Sp, i.e., taking the relaxational properties of s medium into account leads to 
acceleration of compression in comparison with the analogous Newtonian liquid [ii, 13]. 
Here S > S (2) always holds when ~ > 0, and hence R(t) > Rs(t), where Rs(t) is the law of 
cavity closure in a pure solvent [5]. With cavity growth, there is a result of analogous 
significance: R (t) < R(t) < Rs(t), where R (t) is the law of cavity growth in a Newtonian P 
liquid with the viscosity of the solution [4~. 

To investigate the nonlinear stage of the process, the dynamic equations of the cavity 
with a = 1/2, 1 are reduced to dimensionless form, assuming, for the sake of simplicity, that 
pg - p~ = const. It is found that 

xx -q- 3 ~ _ k + 2~*x -1 + (1 - -  13)(Revx) -1 J: - -  J~ =-- O, 
2 

(7)  

3'i/2 + x7'  (1 + 22%,.;cx-9 J* = 1/2 --  13 (R%2%,)-1 kx-1, 
* * * "* 2%--1 ~ )J11 J l = d l l @ d 1 2 ,  J11"+" , (1+42%, x -1 * = 

(8)  

(9)  

- -  ___l [3 (R%X,) -1  xx - l ,  
2 

5'L~ + 2%T ~ (1 + Z,x3c-*) j].~ = - + I~ (Re,2%,) -~ xx -~, 
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k = s i g n  ( p z - -  pool  x = R/Ro, Ro = R (0), -c = t/to, 

j*  
= J ~ ( k ( p ~ - - p o ~ ) )  -~ ,  tp = 4 ~ l ( k ( p ~ - - p ~ ) )  -~ ,  

to = R o ( 9 / k ( p z - - p o o ) )  ~/2, R %  = to~iv, )~, = )~/to, ~* = ~ / ( R o k ( p z - - p ~ ) ) .  

In the course of cavity closure, the effective viscosity De of the polymer solution 
in conditions of elongational flow may increase by two or three orders of magnitude. If 
the corresponding Reynolds number Re = q/NeRep is small, the inertial terms in Eq. (7) may 
be neglected. For solutions of high-molecular compounds, for example, polyoxyethylene in 
water [6], the inequalities Re << Rep and Re < 1 may be satisfied in extension even if 
Rep >> i. The system in Eqs. (7)-(9) admits of accurate solution in the inertialess approxi- 
mation when 2o*x -I << I, which corresponds to R >> i0 -6 m for p~ ~ l0 s Pa. In this case, 
it follows from Eqs. (7) and (8), for example (~ = 1/2), that 

-]- 2 ( Z  - -  Z1)(Z- -  Z2) = O, Z = "XX -1 ,  

1 
z m  = - -  - -  A -+- (A2/16  - 5  B/2) I/2, 

4 

---- - -  k - 1  A %7~(1 ~) - l (1 - -2k l .Re , ) .  B :  Re,)~. (1--[~)-L 

(i0) 

(il) 

Analysis of Eq. (i0) on the phase plane with k = -I shows that z + z I as �9 + ~, if the 
value z 0 = z(0) determining the initial stress of the Maxwellian element in Eq. (2) satisfies 
the condition z 0 > z 2. Here z + zl + 0 if z 0 > zl, and z + zl - 0 if z 2 < z 0 < zl. The 
rest point z = z 2 is unstable. When z 0 < z 2, closure of the cavity occurs in a finite time. 
It is important to emphasize that the rate of closure of the cavity z = z I in asymptotic 
conditions satisfies the inequality Zp _< z I _< 0, where Zp = Rep determines the rate of 
closure of the inclusion in a viscous liquid with the viscosity of the solution q. 

Assuming that the relaxation time I, is a small or large parameter, approximate ex- 
pressions for zz, 2 may be obtained from Eq. (II) 

;~, << 1 :z~  = z, + 21~X, Re~. z2 = - -  [2X.  (1 - -  D l - t  

[ ' ] ~,, >> 1 " Z I = -- (2~ , , )  - 1 ,  Zg = - -  (1 - -  ~ ) - 1  R %  -{- -~ -  [ ~ , . 1  . 

Thus, compression of the cavity in the asymptotic stage occurs more slowly than in a 
viscous liquid with the viscosity of the solution, which agrees with numerical results [ii] 
and the available experimental data on bubble closure in polymer solutions. Conversely, 
cavity expansion occurs more rapidly than in an analogous Newtonian liquid: when k = i, 
it follows from Eq. (ii) that Zp ! zl < z s, where Zp = Rep, and z s = Rep(l - 6) -I is the 
asymptotic growth rate of the cavity Tn pure solvent with viscosity (i -- ~)N. In this case, 
zl = Zp + 281,Re~ when %., << 1 and z I = z s - 1/281~ I (i - 6) "I when I, >> i. Note that the 

criterion of applicability of the approximate solution in Eq. (ii) in cavity growth, as in 
compression, is the condition Re << i. 

The result obtained is explained by the different behavior of the component of the stress 
tensor T (I), determining, as shown above, the influence of the rheology of the medium on the 

rr 
cavity dynamics,, in flows of liquid extension and compression, respectively [6]: in the 
first case, IT~)I may reach significantly higher values than in the second. Analogous re- 

results follow from Eqs. (7) and (9) for ~ = i. 

With the aim of investigating transient processes in cavity closure the accurate system 
in Eqs. (7) and (9) is solved numerically on a computer with x(0) = i, x(0) = J*(0) = 0. 
Characteristic curves are shown in Fig. i, together with curves of Xs(~), Xp(~)corresponding 
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x 

0 # 12 /8 ~, 

Fig. i. Dynamics of cavity closure in 
relaxing liquid (o ~ = 0.005, 8 = 0.95, 
Rep = 0.i): i, 2, 3) k~ = i, 5, i0. 

to pure solvent and Newtonian liquid with the viscosity of the solution, for comparison. It 
is evident that, in contrast to Newtonian liquid, closure of the cavity in the polymer solu- 
tion is nonmonotonic in character: at a definite stage of the process, compression of the 
bubble stops and expansion begins, on account of the pressure difference which acts. The 
presence of an oscillatory section on the curve of x = x(~) is due to rheological nonlinearity. 
The initial stages of the~process, as noted above, are realized according to a law close to 
the dependence Xs(T). However, the normal stress which develops in the liquid close to the 
cavity surface in this case rapidly leads to slowing of the rate of compression, and then to 
change in sign of x(T). Expansion of the cavity occurs until the stress relaxes to the 
corresponding value as a result of change in sign of the rate of longitudinal deformation. 
After damping of the oscillations, the system reaches the noninertial asymptote in accordance 
with the analytical solution of Eqs. (7) and (9), analogous to Eq. (ii). It follows from 
Fig. 1 and the calculations that increase in relaxation time when Rep = const increases the 
length of the oscillatory section and the amplitude of the pulsations; the rate of closure 
of the cavity at the asymptotic stage decreases simultaneously. Calculations with e = 1/2 
show that decrease in ~ is due to more rapid damping of the oscillations, and the radius of 
the cavity is smaller on reaching the asymptote, which is completely explained by the reduc- 
tion in level of normal stress in the liquid on account of reduction in the role of nonlinear 
terms in Eq. (2). Note, in conclusion, that some acceleration in the rate of cavity closure 
in the concluding stages of the process according to the calculation results in comparison 
with the asymptote is associated with the appearance of surface tension forces. 

NOTATION 

R(t), radius of inclusion; p, o, density and surface tension of liquid; t, time; Trr(Y , 
t), T~(y, t), components of excess-stress tensor; r, e, r spherical coordinate system; 
y = 17~(r3-R3), Lagrangian coordinate; p~, pg, pressure at infinity and inside bubble; D/Dt, 
Jaumann derivative; D, deformation-rate tensor; k, relaxation time; n, Newtonian viscosity 
of polymer solution; 0 ~ 8 ! i, measure of the contribution of the dissolved polymer to the 
effective viscosity of the medium; ~, parameter of model. 
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VORTEX MOTION IN DILUTE POLYMER SOLUTIONS 

A. L. Yarin UDC 532.527:532.135 

Vortex-dynamic equations have been derived and applied to two problems concerning 
annular vortices. 

i~ It has been found that an important part is played by the behavior of individual 
vortex structures in turbulent transport [I, 2] from measurements on turbulent boundary 
layers and friction reduction by polymers (about 0.001-0.01%). Here I present a quasi-one- 
dimensional approach to vortex dynamics (vortex filaments of finite thickness) in dilute 
polymer solutions. 

Measurements show that a major stage (vortex stretching) can be retarded by the entropy- 
dependent elasticity in macromolecular coils. The vortex is formed in a boundary layer or 
by a generator via velocity pulsations or pulses arising from the generator. The vorticity 
is generated in a shear layer at the boundary of the flow, with the leading part acquiring 
a mushroom form and being transferred to the core of the vortex [2]. At the head of the flow, 
the liquid particles are spread out as occurs in a free disk film arising from the collision 
of a thin jet with a small target [3]. One therefore expects that the vortex will contain 
macromolecular coils at its core, which are stretched along the axis. If the vortex is then 
stretched at a rate exceeding 0 -I , the longitudinal elastic stresses in the core will in- 
crease (otherwise, they will decrease). These stresses influence the velocity pattern and 
thus the core evolution. The vortex is surrounded by unstretched liquid, and although the 
liquid and the core contain macromolecules, the elastic stresses in the latter are negligible, 
and it may be considered as ideal (if vortex diffusion is negligible). 

We now consider a vortex whose core is subject to a longitudinal elastic stress (the 
liquid is considered as incompressible). We assume as a first approximation that this stress 
is constant over the cross section of the core. Correspondingly, the stress tensor in the 
core will be o' = o~ fT. The sum of this elastic tensor o' and the viscous-stress tensor 
is the deviator for the stress tensor in the liquid [4]. The equation for the core.vorticity 
is 

D~ 1 
- ( ~ . v ) v  + ~A~ + --v• (v .o ' ) .  (1 )  

Dt p 

From (i), viscous effects are unimportant for times less than t < m2/v, which we consider. 

The contribution from the elastic stresses in (I) is 

V X (V.O') = b \ .a~x ~ ~ , - - - ~ / - -  k,• (2) 

The right side of (2) is zero for rectilinear ~nd annular vortices and is small in the 
long-wave approximation for any vortex. We therelore restrict ourselves to that approxima- 
tion for times t < m2/v, where the second amd thir~d terms on Zhe right in (I) ~n be 
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